The Elegant Universe - By Brian Greene Page 0,2

book would not have been written.
Chapter 1
Part I: The Edge of Knowledge

Chapter 1

Tied Up With String

Calling it a cover-up would be far too dramatic. But for more than half a century - even in the midst of some of the greatest scientific achievements in history - physicists have been quietly aware of a dark cloud looming on a distant horizon. The problem is this: There are two foundational pillars upon which modern physics rests. One is Albert Einstein's general relativity, which provides a theoretical framework for understanding the universe on the largest of scales: stars, galaxies, clusters of galaxies, and beyond to the immense expanse of the universe itself. The other is quantum mechanics, which provides a theoretical framework for understanding the universe on the smallest of scales: molecules, atoms, and all the way down to subatomic particles like electrons and quarks. Through years of research, physicists have experimentally confirmed to almost unimaginable accuracy virtually all predictions made by each of these theories. But these same theoretical tools inexorably lead to another disturbing conclusion: As they are currently formulated, general relativity and quantum mechanics cannot both be right. The two theories underlying the tremendous progress of physics during the last hundred years - progress that has explained the expansion of the heavens and the fundamental structure of matter - are mutually incompatible.

If you have not heard previously about this ferocious antagonism you may be wondering why. The answer is not hard to come by. In all but the most extreme situations, physicists study things that are either small and light (like atoms and their constituents) or things that are huge and heavy (like stars and galaxies), but not both. This means that they need use only quantum mechanics or only general relativity and can, with a furtive glance, shrug off the barking admonition of the other. For fifty years this approach has not been quite as blissful as ignorance, but it has been pretty close.

But the universe can be extreme. In the central depths of a black hole an enormous mass is crushed to a minuscule size. At the moment of the big bang the whole of the universe erupted from a microscopic nugget whose size makes a grain of sand look colossal. These are realms that are tiny and yet incredibly massive, therefore requiring that both quantum mechanics and general relativity simultaneously be brought to bear. For reasons that will become increasingly clear as we proceed, the equations of general relativity and quantum mechanics, when combined, begin to shake, rattle, and gush with steam like a red-lined automobile. Put less figuratively, well-posed physical questions elicit nonsensical answers from the unhappy amalgam of these two theories. Even if you are willing to keep the deep interior of a black hole and the beginning of the universe shrouded in mystery, you can't help feeling that the hostility between quantum mechanics and general relativity cries out for a deeper level of understanding. Can it really be that the universe at its most fundamental level is divided, requiring one set of laws when things are large and a different, incompatible set when things are small?

Superstring theory, a young upstart compared with the venerable edifices of quantum mechanics and general relativity, answers with a resounding no. Intense research over the past decade by physicists and mathematicians around the world has revealed that this new approach to describing matter at its most fundamental level resolves the tension between general relativity and quantum mechanics. In fact, superstring theory shows more: Within this new framework, general relativity and quantum mechanics require one another for the theory to make sense. According to superstring theory, the marriage of the laws of the large and the small is not only happy but inevitable.

That's part of the good news. But superstring theory - string theory, for short - takes this union one giant step further. For three decades, Einstein sought a unified theory of physics, one that would interweave all of nature's forces and material constituents within a single theoretical tapestry. He failed. Now, at the dawn of the new millennium, proponents of string theory claim that the threads of this elusive unified tapestry finally have been revealed. String theory has the potential to show that all of the wondrous happenings in the universe - from the frantic dance of subatomic quarks to the stately waltz of orbiting binary stars, from the primordial fireball of the big bang to the majestic swirl of heavenly galaxies - are reflections of one grand